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EIGENOSCILLATIONS OF AN ELASTIC BODY

WITH A ROUGH SURFACE

UDC 539.3S. A. Nazarov

Explicit presentations for the initial terms of the asymptotic solution of the spectral problem of
the elasticity theory in a plane region with a rapidly oscillating boundary are obtained. Based on
asymptotic formulas, two methods for problem modeling are proposed: with the use of Wenzel’s
boundary conditions and with the use of the principle of a smooth image of a singularly perturbed
boundary. Various approaches to justification of asymptotic presentations are discussed.
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1. Body with a Rough Surface. Let Ω be a plane inhomogeneous anisotropic elastic body bounded by a
simple smooth closed contour Γ. The contour length is reduced to a unit length by scaling. Using a small parameter
h = N−1, where N is a large natural number, we determine a rapidly oscillating (fine-grain) boundary of the body
Ωh (Fig. 1):

Γh = {x ∈ OΓ: n = hH(s, h−1s)}. (1.1)

Here OΓ is the neighborhood of the set Γ on which an orthogonal system (n, s) of curvilinear coordinates is
introduced, s is the arc length on Γ, n is the oriented distance to the contour Γ (n > 0 outside Ω), and H is a
smooth function of the slow s and fast η2 = h−1s variables, which is periodic with respect to the latter variable (in
the present work, a unit period is used).

We consider the problem of eigenoscillations of the body Ωh:

−∂x1σ1k(u; h, x) − ∂x2σ2k(u; h, x) = Λ(h)ρ(x)uk(h, x), x ∈ Ωh; (1.2)

σ
(ν)
k (u; h, x) := ν1(h, x)σ1k(u; h, x) + ν2(h, x)σ2k(u; h, x) = 0, x ∈ Γh. (1.3)

Here ρ > 0 and Λ(h) ≥ 0 are the material density and the squared eigenfrequency, ∂xj = ∂/∂xj , ν = (ν1, ν2) is
the unit vector of the external normal to the boundary ∂Ωh = Γh, u = (u1, u2) is the vector of displacements, and
σjk are the Cartesian components of the stress tensor:

σjk(u; h, x) =
2∑

p,q=1

Apq
jk(x)εpq(u; h, x), εpq(u) =

1
2

(∂up

∂xq
+

∂uq

∂xp

)
.

As the domain Ωh for H > 0 is wider than the domain Ω, the components Apq
jk of the quadrivalent tensor A, which

is smooth, symmetric, and positively defined, we assign the sets Ω = Ω ∪ ∂Ω in the neighborhood Ω ∪ OΓ. Other
fields, which are independent of the parameter h, are also assumed to be smoothly continued into the external
domain with respect to Ω. For brevity, we do not indicate the parameter h among the function arguments in what
follows. In further notation, we do not distinguish between the contour point Γ and its coordinate s.

Sections 2–4 describe an asymptotic analysis of the spectral problem formulated above, and essentially
explicit formulas for two terms of the asymptotic expansions of its solutions are derived. The main challenge of
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Fig. 1. Body with a rough surface.

the paper, however, is modeling the problem in the domain with a rapidly oscillating boundary (1.1), namely,
constructing simpler formulated boundary-value problems whose solutions yield an approximation with elevated
accuracy (two-term asymptotics) for the solution {Λ, u} in the domain Ωh. For the scalar Dirichlet problem,
various modeling methods were developed in [1]. In addition to technical problems associated with definition of the
terms of the asymptotic ansatz, the problem of the elasticity theory with boundary conditions in stresses (analog of
the Neumann conditions) involve one more difficulty: the spectral parameter is present in the boundary conditions
of the limiting and resulting problems.

2. Constructing the Main Terms of the Asymptotics. It is known that a boundary layer appears
near a rapidly oscillating boundary (see, e.g., [2, 3]); therefore, the asymptotic ansatz for the solution {Λ, u} of the
spectral problem (1.2), (1.3) is taken in the form

Λ = λ0 + hλ1 + . . . ; (2.1)

u(x) = v0(x) + hv1(x) + χ(n)h(w1(s, η) + hw2(s, η)) + . . . . (2.2)

Here vi are terms of the regular type and wi are terms of the boundary-layer type multiplied by a patch function χ

equal to unity near the contour Γ and to zero outside the set OΓ. Terms of the regular type are solutions of problems
in the domain Ω = Ω0 bounded by the limiting contour Γ = Γ0; for instance, the formal transition to h = 0 leads
to relations

−∂x1σ1k(v0; x) − ∂x2σ2k(v0; x) = λ0ρ(x)v0
k(x), x ∈ Ω; (2.3)

σ
(n)
k (v0; x) := n1(s)σ1k(v0; x) + n2(s)σ2k(v0; x) = 0, x ∈ Γ. (2.4)

As the normal n = (n1, n2) to the contour Γ differs from the oscillating normal ν to the contour Γh, the
solution of problem (2.3), (2.4) leaves a residual in the boundary condition (1.3), which is compensated by terms of
the boundary-layer type. The vector functions wi depend not only on the slow variable s ∈ Γ but also on the fast
variables

η = (η1, η2) = (h−1n, h−1s). (2.5)

Substitution of coordinates x �→ η and the local-periodic structure of the boundary (1.1) are responsible for the
emergence of a half-band

Π(s) = {η ∈ R
2: η2(0, 1), η1 < H(s, η2)} (2.6)

as another limiting domain; the butt-end face of the half-band π(s) = {η ∈ ∂Π(s): η1 ∈ (0, 1)} is curved. We
introduce the projections of the vector wi onto the axes n and s:

wi
1 = wi

n = n1w
i
1 + n2w

i
2, wi

2 = wi
s = −n2w

i
1 + n1w

i
2.

As the stretching of coordinates by a factor of h−1 and the transition to h = 0 implies “freezing” of dependences
on slow variables at the points s ∈ Γ, the coordinates (2.5) should be considered mainly as Cartesian coordinates.
We assume that wi = (wi

1, w
i
2) and
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σjk(w; s, η) =
2∑

p,q=1

Apq
jk(0, s)εpq(w; s, η), εpq(w) =

1
2

(∂wp

∂ηq
+

∂wq

∂ηp

)
, (2.7)

where Apq
jk(0, s) are the components of the tensor A(0, s) obtained by orthogonal transformation of the tensor

A(x)
∣∣∣
n=0

by the matrix

Θ(s) =
(

n1(s) n2(s)
−n2(s) n1(s)

)
.

Preserving the notation vi(n, s) for the fields written on the set Ω ∩ OΓ in curvilinear coordinates, we obtain
vi(0, s) = Θ(s)vi(0, s). We also give formulas for strains and the equation of equilibrium in the coordinate system
(n, s):

εnn(u) = ∂nun, εss(u) = J−1(∂sus + κun),

εns(u) = εsn(u) = (∂nus + J−1(∂sun − κus))/2;
(2.8)

−∂nσnn(u) − J−1(∂sσns(u) + κ(σnn(u) − σss(u))) = Λρun,

−∂nσsn(u) − J−1(∂sσss(u) + 2κσns(u)) = Λρus.
(2.9)

Here J(n, s) = 1+nκ(s) is the Jacobian and κ(s) is the curvature of the arc Γ at the point s. Finally, the projections
of the normal ν onto the axes n and s admit the presentations

νn(s, η) = ν1(s, η2)(1 − hY (s, η)) + O(h2),

νs(s, η) = ν2(s, η2)(1 − hY (s, η)) − h(ν2(s, η2)η1κ(s) + y(s, η2)∂sH(s, η2)) + O(h2), (2.10)

Y = ν1ν2(∂sH − κH∂η2H), y = (1 + |∂η2H |2)−1/2,

where ν = (ν1, ν2) is the unit vector of the normal to the butt-end face of the half-band Π(s) ⊂ R
2 	 η.

In relations (2.8) and (2.9), we pass to the stretched coordinates (2.5) and substitute ansatz (2.2) into
Eqs. (1.2) and boundary conditions (1.3). Collecting coefficients at identical powers of the small parameter and
equating their sums to zero, we obtain the following problems in the half-band (2.6):

−∂η1σ1k(wi; s, η) − ∂η2σ2k(wi; s, η) = F i
k(s, η), η ∈ Π(s),

σ
(ν)
k (wi; s, η) := ν1(s, η2)σ1k(wi; s, η) + ν2(s, η2)σ2k(wi; s, η) = Gi

k(s), η ∈ π(s), (2.11)

wi(s, η1, 0) = wi(s, η1, 1), ∂η2w
i(s, η1, 0) = ∂η2w

i(s, η1, 1), η1 < H(s, 0).

According to expansion (2.10), we have

F 0
k (s, η) = 0, G0

1(s, η) = 0, G0
2(s, η) = −ν2(s, η2)σss(v0; 0, s). (2.12)

Here G0
2 is the main part of the residual of the vector function v0 in the boundary condition (1.3): all stresses,

except for σss(v0; 0, s), are canceled on Γ by virtue of relations (2.4).
The mean value of the component ν2 over the butt-end face π(s) equals zero; hence, problem (2.11) with

i = 0 has the only solution exponentially decaying at infinity:

w0(s, η) = −W (s, η)σss(v0; 0, s). (2.13)

This fact, which follows, e.g., from the general results [4, Chapter 6], expresses the known Saint-Venant principle
with allowance for conditions of periodicity on the sides of the half-band Π(s). It should be noted that the decay
of solution (2.13) of the boundary-layer type confirms the valid choice of the boundary conditions in problem (2.3),
(2.4) for the regular-type solution.

It is clear that W is the solution of problem (2.11) with the right sides F1 = F2 = 0, G1 = 0, and G2 = ν2.
With the use of this solution, we introduce the energy characteristic of the elastic half-band, which is similar to the
elastic capacity used in [5], by the equation
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m(s) = E(W ; Π(s)) =
1
2

2∑

j,k=1

∫

Π(s)

σjk(W ; s, η) εjk(W ; s, η) dη. (2.14)

The quantity (2.14) is nonnegative and degenerates only if π(s) is a segment parallel to the axis η2 and, hence,
W = 0.

3. Minor Terms of the Asymptotic. The second term v1 of the regular type satisfies the equations

−∂x1σ1k(v1; x) − ∂x2σ2k(v1; x) = ρ(x)(λ0v
1
k(x) + λ1v

0
k(x)), x ∈ Ω, (3.1)

and the right sides of the boundary conditions

σ
(n)
k (v1; 0, s) = g1

k(s), s ∈ Γ (3.2)

are determined from the conditions of decay of the solution w1 of the boundary-layer type satisfying problem (2.11)
with i = 1. We find the right sides F 1 and G1 of problem (2.11) contained in these conditions, as was mentioned
in [4, Chapter 6]:

∫

Π(s)

F 1
k (s, η) dη +

∫

π(s)

G1
k(s, η) dsη = 0, k = 1, 2. (3.3)

The components of the vector function F 1 acquire the form

F 1 = ∂sσ12(w0) + κ(σ11(w0) − σ22(w0)) − κη1∂η2σ12(w0) + ∂η1Σ11 + ∂η2Σ12,

F 2 = ∂sσ22(w0) + 2κσ12(w0) − κη1∂η2σ22(w0) + ∂η1Σ21 + ∂η2Σ22.
(3.4)

The first terms in the right sides of Eqs. (3.4) appear in accordance with the rule of differentiation of the complex
function

dz

ds

(
s,

s

h

)
=

(∂z

∂s
(s, η2) +

1
h

∂z

∂η2
(s, η2)

)∣∣∣
η2=h−1s

, (3.5)

the second and third terms appear because the equilibrium equations (2.9) contain the curvature κ(s) and the
Jacobian J(n, s)−1 = 1 − hη1κ(s) + O(h2), and the fourth and fifth terms appear because it is necessary to take
into account relations (2.8), (3.5) and the Taylor expansion

A(n, s) = A(0, s) + hη1∂nA(0, s) + O(h2) (3.6)

in calculating the true stresses σpq(w0). The explicit form of the expressions Σjk is not needed, because they are
canceled in formula (3.3) together with similar terms in the components of the vector function G1:

G1
1 = −ν1Σ11 − ν2Σ12 − H(ν1 ∂nσnn(v0) + ν2 ∂nσsn(v0))

+ Y (σ(ν)
1 (w0) + σ

(ν)
1 (v0)) + (ν2Hκ + y ∂sH)(σ12(w0) + σsn(v0)),

G1
2 = −ν1Σ21 − ν2Σ22 − H(ν1 ∂nσns(v0) + ν2∂nσss(v0)) (3.7)

+ Y (σ(ν)
1 (w0) + σ

(ν)
2 (v0)) + (ν2Hκ + y ∂sH)(σ22(w0) + σss(v0)).

The terms with the factor H appear from the Taylor formula for stresses σ(v0; n, s) similar to Eq. (3.6), and the
last pairs of terms in the right sides of equalities (3.7) originate from the second terms of expansions (2.10) of the
components of the normal ν. All stresses generated by the displacement field v0 are calculated on the contour, i.e.,
the boundary conditions (2.4) leave only the longitudinal stress σss(v0; 0, s) with a nonzero value. The multipliers
at Y are equal to zero by virtue of conditions on the butt-end face π(s) in problem (2.11) for w0. The derivatives
∂nσnn(v0; 0, s) and ∂nσns(v0; 0, s) can be found from the equilibrium equations (2.9). Finally, the Stokes formula

∫

Π(s)

η1
∂

∂η2
σj2(w0; s, η) dη = −

∫

π(s)

η1ν2(s, η2)σj2(w0; s, η) dsη

shows that several terms in Eqs. (3.4) and (3.7), which contain the products of the integrands and the curvature κ,
do not contribute to conditions (3.3).
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To find the integrals of the remaining terms in Eqs. (3.4) and (3.7), we use several formulas:
1) relations

∫

π(s)

νj(s, η2) dsη = δj,1,

∫

π(s)

η1νj(s, η2) dsη = H(s)δj,1,

∫

π(s)

y(s, η)
∂H

∂s
(s, η2) dsη =

1∫

0

∂H

∂s
(s, η2) dη2 =

dH

ds
(s), H(s) =

1∫

0

H(s, η2) dη2,

(3.8)

where δj,k is the Kronecker delta;
2) equalities

∫

π(s)

ν2(s, η)W2(s, η) dsη =
2∑

j=1

∫

π(s)

σ
(ν)
j (W ; s, η)Wj(s, η) dsη = 2m(s),

2∑

j,k=1

A1i
jk(0, s)

∫

π(s)

νk(s, η2)Wj(s, η2) dsη = 0 (i = 1, 2);
(3.9)

3) equality

εss(v0; 0, s) = b(0, s)σss(v0; 0, s) (3.10)

valid by virtue of the boundary conditions (2.4) and containing the element b(0, s) = B22
22(0, s) of the compliance

tensor B(0, s) inverse to the stiffness tensor A(0, s). For a homogeneous isotropic material, we have b(0, s) =
(2μ)−1(1 − ν). Here μ is the shear modulus and ν is Poisson’s ratio. To check the last two equalities in (3.9), we
apply the Green formula with the fields W (s, η) and ζ1(η) = (η1, 0) or ζ2(η) = (0, η1):

0 =
2∑

j,k=1

∫

Π(s)

ζi
j(η)

∂

∂ηk
σjk(W ; s, η) dη =

2∑

j,k=1

∫

π(s)

(
W (s, η)σ(ν)(ζi; η) − ζi

k(η)σ(ν)
k (W ; s, η)

)
dsη.

The expression in the right side of this formula coincides with expression (3.9) with i = 1, 2 by virtue of rela-
tions (3.8), (2.12), and (2.13), and also equalities (2.7) for the vector polynomials ζi(η).

Finally, we obtain the formulas
∫

Π(s)

∂

∂s
σp2(W ; s, η) dη −

∫

π(s)

y(s, η)
∂H

∂s
(s, η)σp2(W ; s, η) dsη =

∂

∂s

∫

Π(s)

σp2(W ; s, η) dη,

∫

Π(s)

σ1i(W ; s, η) dη =
2∑

j,k=1

A1i
jk(0, s)

∫

Π(s)

εjk(W ; s, η) dη =
2∑

j,k=1

A1i
jk(0, s)

∫

π(s)

νk(s, η2)Wj(s, η) dsη = 0, (3.11)

∫

Π(s)

σ22(W ; s, η) dη = b(0, s)−1

∫

Π(s)

ε22(W ; s, η) dη −
2∑

i=1

βi(s)
∫

Π(s)

σ1i(W ; s, η) dη

= b(0, s)−1

∫

π(s)

ν2(s, η)W2(s, η) dsη = 2b(0, s)−1m(s).

In the last calculations, the stress σ22 is expressed via the strain ε22 and the stresses σ11 and σ12 with certain
coefficients β1 and β2 [cf. Eq. (3.10)], and also equalities (3.9). Relation (3.11) involves the formula of differentiation
of the integral with a variable upper limit; according to definition (2.10) of the factor y(s, η), we have y(s, η) dsη =
dη2.
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Cumbersome though simple calculations based on the formulas derived above yield the following expressions
for the right sides of the boundary conditions (3.2):

g1
n(s) = −κ(s)α(s)εss(v0; 0, s) + λ0H(s)ρ(0, s)v0

n(0, s),

g1
s(s) = ∂s(α(s)εss(v0; 0, s)) + λ0H(s)ρ(0, s)v0

s(0, s);
(3.12)

α(s) = b(0, s)−1H(s) − 2b(0, s)−2m(s). (3.13)

4. Comments on Asymptotics Appropriateness. Let λ0 = λ(n) be an element of a sequence of
eigenvalues of the limiting problem (2.3), (2.4):

0 = λ(1) = λ(2) = λ(3) < λ(4) ≤ λ(5) ≤ . . . ≤ λ(n) ≤ . . . → +∞. (4.1)

The zero eigenvalue corresponds to stiff displacements. We make an assumption on the multiplicity of the eigenvalue
λ(n) = κ ≥ 1, i.e.,

λ(n−1) < λ(n) = . . . = λ(n+κ−1) < λ(n+κ),

and use v(n), . . . , v(n+κ−1) to denote the corresponding vector functions subjected to conditions of orthogonality
and normalization:

2∑

j=1

∫

Ω

ρ(x)v(p)
j (x)v(q)

j (x) dx = δp,q. (4.2)

We use the following terms as the initial terms of ansatzes (2.1) and (2.2):

λ0 = λ(n), v0 = a1v
(n) + . . . + aκV (n+κ−1).

We find the number λ1 and the column a = (a1, . . . , aκ) from the conditions of solvability of problem (3.1), (3.2)
for the field v1, which acquire the following form by virtue of relations (3.12), (2.8), and (4.2):

apλ1 = −
2∑

j=1

∫

Γ

g1
j (s)v(n+p)(0, s) ds =

κ−1∑

p=0

M (n)
pq aq,

M (n)
pq =

∫

Γ

(
α(s)εss(v(n+p); 0, s)εss(v(n+q); 0, s) − λ(n)ρ(0, s)H(s)

2∑

j=1

v
(n+p)
j (0, s)v(n+q)

j (0, s)
)

dsx.

(4.3)

Clearly, the matrix M (n) with elements (4.3) is symmetric, i.e., it has real numbers λn0
1 , . . . , λ

(nκ−1)
1 and its own

orthonormalized columns an0, . . . , a(nκ−1), which define concretely the terms λ0, λ1 and v0, w0 of ansatzes (2.1)
and (2.2); moreover, from problems (3.1), (3.2), and (2.11), where i = 1, one can find the next asymptotic terms
v1(x) and w1(s, η) (note that they are determined with accuracy to the terms ṽ(x) = ã0v

(n)(x)+. . .+ãκv(n+κ−1)(x)
and −W (s, η)σss(ṽ; 0, s)).

Despite oscillations of the boundary (1.1) of the domain Ωh, Korn’s inequality is valid [6, Chapter 3]:

‖u; H1(Ωh)‖2 ≤ c

2∑

j,k=1

‖εjk(u); L2(Ωh)‖2; (4.4)

in this inequality, the constant c is independent of the parameter h ∈ (0, h0], h0 > 0 and the vector function u

belonging to the Sobolev space H1(Ωh) and subjected to the orthogonality conditions
∫

ω

u1(x) dx =
∫

ω

u2(x) dx =
∫

ω

(x2u1(x) − x1u2(x)) dx = 0,

where ω is a nonempty subdomain in Ω, for instance, ω = Ω \ OΓ. Inequality (4.4) offers a partial substantiation
of the asymptotics constructed by means of a standard approach (see, e.g., [7]), namely, by means of a lemma “on
almost eigenvalues and vectors” [8], one can easily verify that the sequence of eigenvalues of problem (1.2), (1.3)
similar to (4.1)
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Fig. 2. Body with a periodic family of edge cracks.

0 = Λ(1) = Λ(2) = Λ(3) < Λ(4) ≤ Λ(5) . . . ≤ Λ(n) ≤ . . . → +∞ (4.5)

contains at least κ elements Λ(p), . . . , Λ(p+κ−1) for which the following estimates are valid:

|Λ(p) − λ(n) − hλ
(nq)
1 | ≤ cnqh

3/2 (q = 0, . . . , κ − 1). (4.6)

It is more difficult to check the following conclusions: there are no more than κ of these elements and the
equality p = n is valid. Usually these conclusions are verified on the basis of the “convergence” theorem, which
predicts that Λq(h) → λq as h → +0 (see [9, 7] and other publications). In [6] (see also [9–12]), procedures of
direct and inverse convergence are proposed, which, first, establish the two facts mentioned above and, second,
reveal the dependence of the multipliers cnq in relations (4.6) on the characteristics of the limiting spectrum:
eigenvalue λ(n), its multiplicity κ = κ

(n), and relative distance dn = min {1 − λ(n−1)/λ(n), 1 − λ(n)/λ(n+κ)} to the
neighboring points of the spectrum. The mere formulation of the latter result is rather cumbersome; therefore, we
restrict ourselves to statement of a typical conclusion verified by the known scheme: inequalities (4.6) contain the
eigenvalues Λ(n), . . . , Λ(n+κ−1), and the remaining terms of sequence (4.5) do not satisfy these inequalities.

The results obtained also remain valid for more generic types of boundary perturbations. As an example, we
can consider a periodic family of edge cracks (Fig. 2). In this case, H(s) = 0 and m(s) > 0; hence, coefficient (3.13)
is negative.

5. Modeling with the Help of Wenzel’s Conditions. The publications dealing with investigations of the
boundary layer in the theory of thin elastic plates [13, 14] and with singularly perturbed scalar spectral boundary-
value problems [1] offer a method for unifying the limiting problems of the form (2.3), (2.4) and (3.1), (3.2) into
a general (so-called resulting) boundary-value problem whose solution is an elevated-accuracy approximation, as
compared with the solution of the original problem (1.2), (1.3). In the case considered, such a problem has the form

−∂x1σ1k(uw; h, x) − ∂x2σ2k(uw; h, x) = Λw(h)ρ(x)uw
k (h, x), x ∈ Ω,

σnn(uw; h, 0, s) + hκ(s)εss(uw; h, 0, s) = Λw(h)ρ(0, s)H(s)uw
n (h, 0, s), (5.1)

σns(uw; h, 0, s)− h ∂s(α(s)εss(uw; h, 0, s)) = Λw(h)ρ(0, s)H(s)uw
s (h, 0, s), s ∈ Γ.

As the last boundary condition contains a second-order differential operator −hα(s) ∂2
s , the boundary conditions

should be interpreted as an elastic analog of Wenzel’s scalar condition (see [15] and the references therein). In
[16–18], similar boundary conditions were called the wall-law conditions.

Problem (5.1) has the following variational formulation [19, 20]: it is necessary to find a number Λw = Λw(h)
and a nontrivial vector function uw that belongs to the space H1(Ω), has a trace at the boundary Γ from the Sobolev
space H1(Γ), and satisfies the following integral identity for all test functions vw with similar properties:

2E(uw, vw; Ω) + 2S(uw, vw; Γ) = Λw
2∑

j=1

(∫

Ω

ρuw
j vw

j dx +
∫

Γ

Hρuw
j vw

j dsx

)
. (5.2)
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Here E and S are the elastic and surface energies:

E(uw, vw; Ω) =
1
2

2∑

j,k=1

∫

Ω

σjk(uw)εjk(uw) dx, S(uw, vw; Γ) =
h

2

∫

Γ

αεss(uw)εss(vw) dsx.

If the conditions

α(s) > 0, H(s) ≥ 0 (5.3)

are satisfied [see Eqs. (3.13) and (3.8)], the left side of identity (5.2) determines the scalar product in the above-
described energy class, and the multiplier at Λw in the right side is a positive compact operator. Hence, problem
(5.2) or, which is the same, problem (5.1) has a sequence of eigenvalues Λw(n) of the form (4.5).

If the inequality H(s) < 0 is satisfied on a segment of the contour Γ of positive length, then the eigenvalues
{Λw(n)} include an infinite set of negative numbers. If the function α is negative (see the comments to Fig. 2 at the
end of Sec. 4), only several eigenvalues are nonnegative, while the other eigenvalues form a large negative sequence.
Finally, if the function α degenerates at a point or on a segment of the contour Γ, the spectrum of problem (5.1)
becomes continuous. In the situations described above, problem (5.1) cannot serve as a model for problem (1.2),
(1.3), i.e., inequalities (5.3) are conditions necessary during modeling.

The second restriction (5.3) is purely geometric, while the first one, according to presentation (3.13), contains
both the geometric and the energy characteristics of the rapidly oscillating boundary Γh. Moreover, it is only in an
obviously unacceptable case H(s) < 0 that the value of α(s) is definitely negative, which is also unacceptable. If
H(s) ≥ 0, then the value of α(s) may be either positive or negative. As the substitution

H(s, η2) �→ H(s, η2) + H0 (5.4)

does not affect the energy characteristic (2.14), we may conclude that both conditions (5.3) are satisfied for a new
contour {x ∈ OΓ: n = hH(s, h−1s) + hH0} if H0 in Eq. (5.4) has a sufficiently large positive constant value.

The procedure of constructing the asymptotics of the solutions of problem (5.1) is fairly simple: the boundary
layer disappears from the corresponding ansatzes

Λw(h) = λ0 + hλ1 + . . . , uw(h, x) = v0(x) + hv1(x) + . . . , (5.5)

and their terms satisfy problems (2.3), (2.4) and (3.1), (3.2). Justification of the asymptotic expansions (5.5) as a
whole follows the scheme described in Sec. 4 (see also [1]). The similarity of formulas (2.1), (2.2), and (5.5) suggests
that problem (5.1) with Wenzel’s boundary conditions under restrictions (5.3) is a model of problem (1.2), (1.3) in
the domain Ωh with a rapidly oscillating boundary. Relations (4.6) for the eigenvalues Λ(n)(h) and Λw(n)(h) yield
the inequalities

|Λ(n)(h) − Λw(n)(h)| ≤ Cw
n h3/2. (5.6)

A comparison of the eigen vector functions u(n) and uw(n) may be performed in the L2 metric, because the energy
norm of the term hχw1 from ansatz (2.2) is O(h1/2), i.e., the boundary layer prevails over the correction hv1 of the
regular type.

6. Smooth Image of a Rapidly Oscillating Boundary. Another approach, which differs from that
described in Sec. 5, was proposed in [1]. This approach is based on the following observation: if we take a quantity
Hs(s) independent of the fast variable instead of H(s, h−1s) in Eq. (1.1), all the results described above remain
valid, because a constant function is a particular case of a periodic function. At the same time, we have W = 0,
m = 0 and Hs(s) = Hs(s), αs(s) = b(0, s)−1Hs(s) in relations (2.13), (2.14) and (3.13), (3.12).

We assume that

Hs(s) = H(s) − 2b(0, s)−1m(s), (6.1)

introduce a regularly perturbed domain Ωs
h bounded by the contour Γs

h = {x ∈ OΓ: n = hHs(s)}, and consider the
spectral problem

−∂x1σ1k(us; h, x) − ∂x1σ2k(us; h, x) = Λs(h)ρ(x)us
k(h, x), x ∈ Ωs

h; (6.2)

σ
(ns)
k (us; h, x) = Λs(h)h(H(s) − Hs(s))ρ(0, s)us

k(h, x), x ∈ Γs
h, (6.3)
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where ns is the unit vector of the external normal to the boundary ∂Ωs
h = Γs

h. For problem (6.2) to be solved, we
retain the asymptotic ansatzes (5.5) where the superscript w is replaced by s. As the right side of the boundary
condition (6.3) includes the expression with the small parameter h and by virtue of Eq. (6.1), the terms of these
ansatzes satisfy the same problems (2.3), (2.4) and (3.1), (3.2) as the terms of ansatzes (2.1) and (2.2). Thus,
problem (6.2), (6.3) is a model with higher accuracy for problem (1.2), (1.3) in a domain with a rapidly oscillating
boundary. As the domain Ωs

h is perturbed in a regular manner, justification of the asymptotics is provided by the
general results of functional analysis (see, e.g., [21]).

Let us demonstrate the variational formulation of problem (6.2), (6.3). We have to find a number Λs and
a nontrivial vector function us ∈ H1(Ωs

h) for which the following integral identity is satisfied for all test functions
vs ∈ H1(Ωs

h):

2E(us, vs; Ωs
h) = Λs

2∑

j=1

( ∫

Ωs
h

ρus
jv

s
j dx +

∫

Γs
h

h(H − Hs)ρus
jv

s
j dsx

)
. (6.4)

As Hs ≥ H by virtue of relations (6.1) and (2.14), the multiplier at Λs in identity (6.4) determines a positive
compact operator in the space H1(Ωs

h); hence, the variational problem (6.4) and the boundary-value problem (6.2),
(6.3) have a sequence of eigenvalues Λs(n) of the form (4.5). Moreover, applying inequalities (4.6) to two problems
(in the domain Ωh and in the domain Ωs

h), we can demonstrate that their eigenvalues are related by Eq. (5.6) with
the subscript w replaced by s.

From the viewpoint of calculations, solving problem (6.2), (6.3) is much simpler than solving problems
(1.2), (1.3), and (5.1) with a rapidly oscillating boundary and a small parameter at higher derivatives, respectively.
Therefore, the principle of a smooth image of a singularly perturbed boundary proposed in [1] is more convenient
for modeling than Wenzel’s near-wall boundary conditions. It is impossible, however, to eliminate the spectral
parameter from the boundary condition (6.3): the quantity b(0, s)(H(s)−Hs(s))/2 ≥ 0 is the energy characteristic
(2.14) of oscillations of contour (1.1), which vanishes only in the case of a regular perturbation of the body, i.e.,
in the absence of oscillations of the body surface. This observation again confirms that the model of a fine-grain
boundary cannot be constructed on the basis of geometric measurements only.

This work was supported by the Russian Foundation for Basic Research (Grant No. 06-01-00257).
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